首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   167篇
  免费   10篇
  国内免费   1篇
化学   138篇
晶体学   2篇
力学   11篇
数学   1篇
物理学   26篇
  2023年   4篇
  2021年   6篇
  2020年   11篇
  2019年   2篇
  2018年   5篇
  2017年   7篇
  2016年   5篇
  2015年   9篇
  2014年   17篇
  2013年   7篇
  2012年   15篇
  2011年   13篇
  2010年   5篇
  2009年   10篇
  2008年   15篇
  2007年   4篇
  2006年   6篇
  2005年   12篇
  2004年   6篇
  2003年   3篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1995年   1篇
  1993年   1篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
排序方式: 共有178条查询结果,搜索用时 187 毫秒
171.
A concise route for the syntheses of enantioenriched functionalized scaffolds of medium-sized oxacycles and carbocycles employing the chiral auxiliary-mediated Cu-catalyzed ylide formation/[2,3]-sigmatropic rearrangement as a key step was developed.  相似文献   
172.
A novel iron-catalyzed transfer hydrogenation of alkynes to the corresponding alkenes applying formic acid as a hydrogen donor is reported. An in situ combination of Fe(BF(4))(2)·6H(2)O and tetraphos allows for highly selective hydrogenation of a broad range of aromatic and aliphatic alkynes tolerating different functional groups.  相似文献   
173.
Ruthenium(III) complex catalyzed oxidation of aliphatic amines with bromamine-T under alkaline condition proceeds efficiently to afford carboxylic acids in high conversion. Hexa-coordinated ruthenium(III) complex of the type [RuCl2(PPh3)(L)] (L, tridentate ligand derived by the condensation of o-phenylene diamine with salicylaldehyde) has been synthesized and it was used as a catalyst for the oxidative conversion of amines to carboxylic acids. The detailed mechanistic and kinetic investigations have been made for the oxidation reactions. Under similar experimental conditions all the amines proceed with a common oxidation mechanism and follows an identical kinetics with first-order dependence each on [Oxidant]o and [Amine]o, and fractional order with respect to [Catalyst] and [OH]. To understand the detailed kinetics and mechanism of the reactions, the reactions have been subjected to changes in (i) dielectric permittivity, (ii) primary salt effect, (iii) halide ions and (v) temperature. The reactions were carried out at different temperature and the activation parameters have been calculated. From enthalpy–entropy relationships and Exner correlations, the isokinetic temperature (β) of 382 K, calculated is much higher than the experimental temperature (313 K), indicating that, the enthalpy factor controls the rate. The observed results have been explained by a plausible mechanism and the related rate law has been deduced. The present method developed for the oxidation of amines to carboxylic acids by bromamine-T offers several advantages including high conversion, short reaction times, and stable, cost effective and relatively non-toxic reagents which make the reaction process simple and smooth.  相似文献   
174.
This is the report of the QCD working group at WHEPP-6. Discussions and work on heavy ion collisions, polarized scattering, and collider phenomenology are reported.  相似文献   
175.
Heterocycle-derived aldehydes are challenging substrates in metal-catalysed hydroacylation chemistry. We show that by using azine N-oxide substituted aldehydes, good reactivity can be achieved, and that they are highly effective substrates for the intermolecular hydroacylation of alkynes. Employing a Rh(i)-catalyst, we achieve a mild and scalable aldehyde C–H activation, that permits the coupling with unactivated terminal alkynes, in good yields and with high regioselectivities (up to >20 : 1 l:b). Both substrates can tolerate a broad variety of functional groups. The reaction can also be applied to diazine aldehydes that contain a free N-lone pair. We demonstrate conversion of the hydroacylation products to the corresponding azine, through a one-pot hydroacylation/deoxygenation sequence. A one-pot hydroacylation/cyclisation, using N-Boc propargylamine, additionally leads to the synthesis of a bidentate pyrrolyl ligand.

Heterocycle-derived aldehydes are challenging substrates in metal-catalysed hydroacylation chemistry; using the N-oxide derivatives allows efficient reactions to be achieved.  相似文献   
176.
We consider the problem of Private Information Retrieval with Private Side Information (PIR-PSI), wherein the privacy of the demand and the side information are jointly preserved. Although the capacity of the PIR-PSI setting is known, we observe that the underlying capacity-achieving code construction uses Maximum Distance Separable (MDS) codes therefore contributing to high computational complexity when retrieving the demand. Pointing at this drawback of MDS-based PIR-PSI codes, we propose XOR-based PIR-PSI codes for a simple yet non-trivial setting of two non-colluding databases and two side information files at the user. Although our codes offer substantial reduction in complexity when compared to MDS-based codes, the code-rate marginally falls short of the capacity of the PIR-PSI setting. Nevertheless, we show that our code-rate is strictly higher than that of XOR-based codes for PIR with no side information. As a result, our codes can be useful when privately downloading a file especially after having downloaded a few other messages privately from the same database at an earlier time-instant.  相似文献   
177.
A general cobalt-catalyzed N-alkylation of amines with alcohols by borrowing hydrogen methodology to prepare different kinds of amines is reported. The optimal catalyst for this transformation is prepared by pyrolysis of a specific templated material, which is generated in situ by mixing cobalt salts, nitrogen ligands and colloidal silica, and subsequent removal of silica. Applying this novel Co-nanoparticle-based material, >100 primary, secondary, and tertiary amines including N-methylamines and selected drug molecules were conveniently prepared starting from inexpensive and easily accessible alcohols and amines or ammonia.

A general cobalt-catalyzed N-alkylation of amines with alcohols by borrowing hydrogen methodology to prepare different kinds of amines is reported.  相似文献   
178.
The selective hydrogenation of benzofurans in the presence of a heterogeneous non-noble metal catalyst is reported. The developed optimal catalytic material consists of cobalt-cobalt oxide core–shell nanoparticles supported on silica, which has been prepared by the immobilization and pyrolysis of cobalt-DABCO-citric acid complex on silica under argon at 800 °C. This novel catalyst allows for the selective hydrogenation of simple and functionalized benzofurans to 2,3-dihydrobenzofurans as well as related heterocycles. The versatility of the reported protocol is showcased by the reduction of selected drugs and deuteration of heterocycles. Further, the stability, recycling, and reusability of the Co-nanocatalyst are demonstrated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号